
1

Simulating Fire on the Landscape Using Markov
Models

Kevin McKelvey
Jennifer Crocker
USFS Redwood Sciences Laboratory
1700 Bayview Drive
Arcata CA

July 30, 1996

The term disturbance has traditionally been used by ecologists to describe an event that is rare

and catastrophic (e.g. Cooper 1926). More recently, that view has shifted toward one that

recognizes disturbance as a natural process affecting ecosystem dynamics at many spatial

and temporal scales (White 1979, Rykiel 1985, Pickett et.al. 1989).

The recent efforts to develop generalized definitions of ecological disturbance (Rykiel 1985,

Pickett et.al. 1989) emphasize the hierarchical organization of ecosystems (Allen and Starr 1982). In this

framework, the classification of an event as a disturbance, as opposed to a normal fluctuation, depends on

both the scale of observation and the biological entity being considered. If that entity is a single tree, then

the loss of several limbs during a windstorm is an exogenous disturbance affecting the physiology of the

tree. If the entity of interest is a stand of trees, then the injury of a single tree becomes part of a normal

fluctuation of biomass—the injury is ‘absorbed’ by the higher level.

The temporal scale of interest also affects the definition of disturbance. For example, on the scale

of years, a single large forest fire is a disturbance to a forest landscape. However, on the scale of millenia,

the change in forest structure resulting from a single fire is no longer apparent. It is more appropriate to

identify the landscape structure that emerges from a fire regime. A change in structure at this level requires

a change in statistical parameters such as size distributions and return intervals (Forman and Boerner 1981,

Allen and Wileyto 1983). The hierarchical approach to investigating disturbance emphasizes the impor-

tance of choosing a spatial and temporal scale appropriate to both the level of organization and level of

resolution of interest.

In this investigation, we are concerned with forest structure and dynamics at the landscape scale. A

model of pre-settlement pattern and process at the landscape level can provide a yardstick against which to

measure the current health of the ecosystem. For instance, field studies have indicated a shift in Sierra

Nevada forest structure since 1900, associated with a change in fire regime (Kilgore and Taylor 1979,
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Stephenson et.al. 1991, Swetnam 1993). Before 1900, frequent low intensity fires burned the understory,

leaving open stands with large, widely spaced trees. Since 1900, there has been a sharp decrease in forest

fire frequency, and a corresponding change in stand structure to one that can support crown-fires

(Weatherspoon et.al. 1992). Other effects of forest fire suppression include a disruption of the processes of

seedbed preparation, nutrient recycling, and succession (Kilgore 1973).

A landscape-level vegetation dynamics model can also suggest potential effects of various land

management decisions. For example, the disturbance regime across a landscape may be a vital consider-

ation in designing wildlife reserves (Pickett and Thompson 1978, White 1992).

The structural and dynamical attributes of interest in this study include species composition;

distribution of patch sizes and shapes; disturbance frequency; the effect of ecological gradients such as

temperature and radiation intensity on patch distributions; the role of disturbance in creating heterogeneous

habitat for wildlife; and the effect of vegetation structure on the probability and intensity of disturbance.

Existing fire models

Previous authors have taken several approaches to modeling fires in landscapes. The most detailed

approach is based on Rothermel’s (1972) physical model of fire spread. Rothermel’s model was developed

for forest fire managers to predict fire behavior. It is a physical model, based on an application of the law

of conservation of energy to a unit volume of fuel. Because the fuel bed is assumed to be continuous and

contiguous to the ground, Rothermel’s model is not intended for use in predicting the behavior of crown

fires or spotting behavior.

Required inputs for Rothermel’s model include fuel characteristics, such as fuel loading, fuel

depth, fuel particle surface area-to-volume ratio, heat content, particle density, moisture content, moisture

of extinction, and mineral content; slope; and wind speed. Equations are then used to predict the rate of

spread and intensity of the flame front.

Frandsen and Andrews (1979) used Rothermel’s equations to predict fire behavior in non-uniform

fuels. They expressed the fuel types as an array of cells. The model produced a series of probability

distributions of fire-spread rates and intensity. Burrows (1988) expanded on the idea of using Rothermel’s

model to predict spread across a grid of non-uniform fuels. The study simulated vegetation patterns in time

and space, rather than overall distributions of fire behavior. The spread of fire from a burning cell to a

neighboring cell was modeled as a stochastic process, with the spread probability conditioned on the spread

rate calculated using Rothermel’s model. Fuel types and slopes were allowed to vary from cell to cell, but

weather conditions and fuel drying rates were assumed homogeneous throughout the landscape. Weather

conditions at the time of each fire were selected at random from weather station records. Flammability was

assumed to increase predictably as the vegetation grew back after a burn.



3

Shortcomings associated with applying Rothermel’s model to the landscape

We based our first approach to simulating fire patterns in the Sierra Nevada landscape on previous

spatial implementations of the Rothermel model (Frandsen and Andrews 1979, Burrows 1988). Since

standardized fuel models exist to describe various stand types (Albini 1976), we focused on implementing

spatial variation in fuel drying rates.

Fire managers in the United States use the National Fire Danger Rating System (NFDRS) to

compute moisture for the various size classes of live and dead fuel. The moisture equations in the NFDRS

(Bradshaw et. al. 1983) are based on the physics of cylindrical fuel sticks, without bark, drying off the

ground, in open, south-westerly exposures. Rothermel et.al. (1986) suggested modifying weather station

data on temperature and humidity to account for surface heating (due to differences among sites in aspect,

elevation, canopy cover and wind). We also took this approach. If empirical relationships among solar

radiation, wind, canopy characteristics, temperature, and humidity are assumed then detailed spatially and

temporally explicit probability distributions of surface temperatures and humidities can be developed.

These values are used to calculate the moisture content of fuels for input into Rothermel’s equations for

spread rate and intensity.

This approach, however, requires large amounts of data, much of which does not exist. Spatially

explicit probability distributions for weather data are insufficient—the time series is important in comput-

ing drying rates. The approach also requires numerous submodels, such as models specifying surface

heating rates, wind speed at the surface of a fuel bed, diurnal temperature variations, and shading by

canopy cover or adjacent topography.

The potential for error in both model

structure and parameter estimation is

correspondingly large. Furthermore, the

reliability of the NFDRS drying equa-

tions themselves has been called into

question (Simard and Main 1982,

Anderson 1989).

Others note (Haines et. al. 1976,

Burgan et. al. 1988) that none of the

drying indices commonly used respond

adequately to long-term drought. The

1000-hour time-lag fuel model indicates

the severity of a medium-term (about

four months) drought. For example, for

two years, one hot and dry and the other

cool and wet, Figure 1 shows the computed 1000-hour time-lag fuel moisture. Although the estimated

Figure 1. Estimated 1000-hour fuel moisture for a very wet and
very dry year. 1000-hour fuels have the longest time-lag of any
fuel elements in Rothermel’s model.
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1000-hour moisture content of the moist year is higher than that of the dry year for the first few months of

the fire season their values converge by the end of the season. We expect, however, higher late-season fire

danger during the dry year than during the wet year. More importantly, fire activities increase in hot dry

years (McKelvey and Busse 1996).

There are other difficulties in modifying Rothermel’s model to simulate patterns in a complex forest

ecosystem. One is grid-cell size. Because fire is modeled as a physical process, the assumption of a homo-

geneous fuel bed is critical. In a spatial application of Rothermel’s model, cells must be small enough that

fuel characteristics are uniform within each cell (Frandsen and Andrews 1979). Similarly, the time step in a

physical model should be small enough to capture the dynamics of a spreading fire front. In a mountainous

terrain, fuel drying rates are affected by elevation, wind, slope, aspect, and canopy cover, and a daily

sequence of high and low temperature (Fowler and Asleson 1984, Rothermel et.al. 1986), each of which

varies among grid cells. We encountered computational difficulties in directly applying Rothermel’s model

to a finely gridded landscape. In contrast, Burrows’ (1988) spatial model for a chaparral landscape avoided

much of this complexity because (1) it ignord spatial variation in drying rates; and (2) fuel characteristics

could be described by a few discrete types in a chaparral vegetation mosiac.

With some simplifying assumptions, these computational difficulties could be eased. The resulting

model, however, would still contain many unknown parameters. Fuel and weather parameters would have

to be assigned to each grid cell, over many small-time steps. In addition, some method of conditioning

spread probability on spread rate must be assumed. Also, Rothermel’s spread equations, when used to

simulate patterns in landscapes, lack a mechanism for simulating major, stand replacing fires. Neither

long-term drought nor crown fires are adequately modeled.

Based on the difficulty of developing relevant parameters, we concluded that mechanistic fire models

such as Rothermel’s model and its variants are too detailed to apply realistically on a landscape scale.

Rather, we believe that some statistical description and simulation of fire patterns will be (1) easier to

describe (2) more understandable; (3) faster to implement; (4) more reliable. Our method could retain a

several modeling properties. First, the proportion of forest burned each year should be consistent with

historical data. Second, the amount of forest burned each year should respond appropriately to climatic

shifts. Third, the location of the burned areas should be consistent with stratified data showing relative burn

probabilities in various elevation and rainfall zones, slopes and aspects. Fourth, the distribution of fire

sizes, edge to area ratios, frequencies, and intensities, should be consistent with observed patterns.

Modeling fire pattern directly

The need to make models discrete in space and time relates to the arguments suggested by hierarchy

theory for appropriate choice of scale. In this model, we were interested in landscape patterns that result

from fires, not the short term dynamics of a single fire front as it occurs. Other approaches to modeling

disturbance in landscape focus more directly on the patterns, and less on the physics, of the disturbance

event itself. Baker et.al. (1991) describe a  model that expresses a landscape disturbance regime as a



5

distribution of patch sizes. The parameters of the distribution (negative exponential) vary under the influ-

ence of weather and landscape attributes, such as the time since last disturbance. Agee and Flewelling

(1983) developed a fire-cycle model for the Olympic National Park, based on statistical relationships, in

which fire size was expressed as a function of droughtiness.

Statistically, modelling a disturbance regime requires knowledge of the distribution of various

attributes of the disturbance regime in space and time (Baker 1992). The size distributions for fires have

been described as negative exponential (van Wagtentonk 1986, Baker 1989) or power function (Minnich

1983) distributions.  Several investigators have mapped historical fire patterns and estimated the proportion

of study areas burned over a time-series of years (Heinselman 1973, Romme 1982, Clark 1990). The

distribution of shapes of disturbance events should also be considered. Anderson (1983) fit a double ellipse

model to wind-driven fire size and shape. His model has been incorporated into the Rothermel et.al. (1986)

model to predict fire perimeter, area, and  spread patterns. In a simulation model of fire spread in non-

uniform fuels, Green (1983) found that fire shapes were irregular and often non-elliptical. The irregularity

of fire shapes due to variations in local topography and weather in Sierra Nevada red fir forests has been

observed by Kilgore (1971). A mapping of historical fires in northwestern Minnesota also suggested

irregular, patchy fires (Clark 1990).

Temporal distributions of fire events must also be understood if fire patterns are to be modeled

statistically. The distribution of fire return intervals has been empirically fit to a Weibull distribution

(Johnson and Van Wagner 1985), which changes in form over time with climatic shifts (Clark 1989,

Swetnam 1993). Many field studies of fire return intervals only report a mean and a range (e.g. Martin

1982, Agee et. al. 1990), which are inadequate statistics for deriving an asymmetrical distribution.

Swetnam (1993) found that fire size in giant sequoia groves decayed exponentially with fire frequency.

Finally, models must reflect the spatial arrangement of fires of varying intensity. Fire effects such as

tree mortality and removal of biomass are affected by scorch height, which is a function of fire intensity

(Brown et. al. 1985, Ryan and Reinhardt 1988). Both fire probability (Fowler and Asleson 1984) and

intensity (Kilgore 1973) vary considerably according to site characteristics.

Statistical fire modeling

Various statistical methods have been used to describe and model vegetation patterns. Logistic

regressions, which include neighborhood effects, have been fit to fire probability data in the San Jacinto

Mountains (Chou et. al. 1990). Point pattern analysis (Greig-Smith 1964, Pielou 1977) has been used to

describe levels of contagion in plant communities (Bonnicksen and Stone 1982). As the name point pattern

suggests, these analyses are typically used to test departure from random dispersion at the scale of indi-

vidual trees. Geostatistical methods have been used to simulate spatial patterns in ecology (Rossi et.al.

1993), by expressing spatial auto-correlation as a function of distance.
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The largest study of the statistics of fire pattern to date covered an 85-year fire record for seven

National Forests in the Sierra Nevada (McKelvey and Busse 1996). Using logistic regression methods,

McKelvey and Busse (1996) linked fire occurrence to topographic features, principally elevation. In

addition, McKelvey and Busse (1996) described the size-distribution of fires, and demonstrated their

correlation to seasonal weather patterns both at the scale of the entire Sierra Nevada and within the context

of local topography.

Markovian modeling of contagion

Markovian models have frequently been used to simulate landscape change (see Baker 1989 for a

review). Usually such models are first-order stationary models. That is, the probability of a particular

outcome depends only on the current state and not on the history of previous states, and transition prob-

abilities do not change over time. An important

modification of the Markov chain model is allowing

non-stationary transitions, which may be functions

of variables such as weather or successional stage.

Typically, Markovian models are used to

simulate change over time and ignore spatial effects.

An exception is Turner’s (1987) model, in which

transition probabilities were conditioned on the state

of neighboring cells. Markovian models may also be

used to simulate patterns in space alone. An example

is Catchpole’s (1987) one-dimensional model of fire

spread through a heterogeneous fuel bed. Spatial

dependence in fuel types was simulated by condi-

tioning the fuel type of each cell on the fuel type of

its neighbor.

SFS - the Statistical Fire Simulator

The theoretical basis for SFS

We have developed a spatial Markovian model

in two-dimensions, which retains several of these

desirable properties, yet is very simple to imple-

ment. It is based on a one-dimensional Markov model, and the spatial implementation involves projecting

the one-dimensional version into space by using a space-filling curve.

In the simplest implementation of the one-dimensional version, burn probabilities are assumed

spatially and temporally constant. Two parameters are used as inputs. The first is the proportion of the

landscape B burned each year. The second is a clustering parameter C, indicating neighborhood effects.

Figure 2. Contagion patterns with moderate contagion
and 50% of the landscape burned.
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The clustering parameter indicates the probability that a cell will be burned by a fire front given that a

neighboring cell was burned. The one step transitions are specified by the matrix:

State Burned Unburned

Burned C 1 – C

Unburned B(1 – C) 1 – 2B + BC

  1 – B    1 – B

Changing the parameters B and C changes the pattern of runs of burned cells (Figures 2 and 3).

Unlike most Markov models used in ecology, the one-step transition probabilities indicate transitions in

space, rather than time. Unlike contagion models, this model is not a mechanistic model of the spread of a

fire event. It is a method for resolving spatial

patterns created by multiple fire events occurring in

a single year or block of years. Valid combinations

of C and B are those for which 0 < U < 1, where U

is cell [2,2] of the matrix (above). Importantly, valid

solutions for U exist for all C > B, that is, for all

levels of clustering greater than random.

The assumption of homogeneity in burn

probabilities can be relaxed by expressing B as

function of location and time: B(x, t). This simple

adjustment allows for changes in burn frequency

due to influences such as climate shifts, vegetation,

elevation, slope, and aspect. Figure 4 shows how

fire patterns change given constant C but spatially

variable B. B is 0.5 on the left half of Figure 4 and

0.1 on the right half.  Similarly, C can vary spatially.

In Figure 5, B is constant and C changes. Lastly,

because burned and unburned areas are resolved

within a specific time-period, both B and C can vary

temporally, and, if necessary, be altered by burning

patterns from previous time periods.

The primary appeal of this method, as opposed

to statistical models based on ignition and fire spread, is that both ignition and spread rates change the

overall frequency of fire on the landscape. Small shifts in contagion factors lead to large differences in the

area burned. Generating fires, which match both spatial size patterns and burn an appropriate proportion of

the landscape, requires very fine balancing of ignitions and spread rates. Using the methods described

above, B is completely separate from C. In Figures 1 and 2, for instance, approximately the same propor-

Figure 3. Contagion patterns with high contagion and
50% of the landscape burned.
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tion of the map burned. This separation means that

if we have good estimates of B, derived from

historical data, we are free to modify C to match

historical fire-size patterns without worrying about

deforming the location and frequency of the fires.

Two-dimensional application: filling space

The method is extended into two-dimensions

by using a random walk to fill an area with a one-

dimensional sequence of states (Burned/Unburned),

subject to the constraint that each cell in the plane is

entered exactly once. This method preserves the

property that a proportion B of the landscape is

burned. However, our understanding of the param-

eter C is altered by the use of a one-dimensional

walk to fill space. For a given cell (x,y) in the

landscape, two of its four neighbors are actually

‘adjacent’ from the point of view of the one-dimen-

sional process used to fill space—the cell entered

immediately before and  immediately after. For

these cells, the conditional probability of burning

given that (x,y) burns is C. The probability that the

other two neighbors are burned given that (x,y) is

burned is different from C. This probability is bounded by B, the unconditional probability of burning, and

C, the probability of burning given that the last cell entered burned.

The parameter C, if carefully chosen, can provide a pattern of burns that preserves the properties

suggested by the one-dimensional model: a known proportion B of landscape burned, and a known condi-

tional probability P of burning given that any neighboring cell is burned. A lower bound for P is (B + C)/2:

the average of the unconditional probability of burning and the known conditional probability of burning

for the two cells which are actually ‘adjacent’ in the one-dimensional walk. If C > B, P will be greater than

(B+C)/2, because of the probability of being within a run of burned cells when a nearby cell is reached. An

upper bound for P is C. the probability P can be calculated as:

where P(x | x0) is the probability that a cell x neighboring cell x0 in any of the four directions is burned

given that cell x0 burns. P(x0 + n| x0) is the probability that a cell entered n steps after cell x0 burns given

Figure 4. Contagion patterns with 50% of the landscape
burned on the top half of the map and 10% burned on
the bottom half. At the boundary area between these
two background probabilities, the area burned is
intermediate between 10% and 50%.
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that cell x0 burns, and f(n) is the probability that a

cell adjacent to cell x0 is entered at step x + n or x -

n. P(x0 + n | x0) is calculated by taking element [1,1]

of the nth power of the single-step probability

matrix (Ross 1989). This power is only computed

until the element [1,1] of the matrix converges to a

steady state, which is the independent probability of

burning B. Thus, the sum that must be taken to

calculate P is a finite sum. The probability f(n) is

calculated by simulation, but must only be calcu-

lated once, as it is not a function of B or C. The

probability P is therefore completely determined by

B and C. If a desired P and B are specified, the

appropriate parameter C can be determined by

inverting the function relating P to B and C.

The method described can be used to produce

patterns that have many of the desired properties

listed above. By expressing B as a function of space

and time B(x,y,t), we can ensure that the appropriate

proportion of the landscape is burned for a given

climatic regime, vegetation type, aspect, and eleva-

tion. By manipulating the parameter C, we can

create spatial patterns with known statistical properties, such as patch-size distributions and edge-to-area

ratios. Only two parameters must be manipulated, decreasing error propagation. However, we can make

these two parameters respond appropriately to field data as it accumulates, by stratifying their values based

on landscape attributes.

Applying SFS to landscapes

Probabilities of burning and contagion factors will not be uniform on a landscape. The conditional-

probability-based approaches stated above can be resolved in non-uniform landscapes, but there will be

subtle, but important changes in the local pattern of fire due to juxtaposition of high and low burn prob-

abilities. Areas of high fire probability will produce more fires and due to contagion effects, those fires will

spread to adjacent areas of lower burn probability. Similarly, areas that have high fire probabilities, but are

adjacent to areas that seldom burn, will burn less than expected.

These effects are not unwelcome and match observed fire behavior: the forest at the top of a brush

field may burn more frequently than other similar forests because fires which start in the brush spread into

Figure 5.Contagion patterns with high contagion on the
top and low contagion on the bottom. Fifty percent of
the map area is burned on both the top and bottom
sides of the map.
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the adjacent forest. However, they do pose

additional difficulties for duplicating back-

ground fire frequencies. Fire occurrence

probabilities based on historical fire data are

already the product of both background

ignition probabilities and of contagion. Hence,

by starting with these maps and adding addi-

tional contagion factors we cause fire to

“spread out” beyond the range of the historic

fires. It should be possible to force conformity

between modeled and historic fires by itera-

tively changing the background probability

map until the simulated occurrence patterns

match the original fire occurrence map.

Determining the probability of fire

Matching historic fire probabilities only makes sense if the probabilities are stationary in time. If the

probability of fire occurrence changes with shifts in vegetation, then these probabilities will directly

feedback to the fire activity and there will be no underlying pattern to match.

A study of fire in the 20th century

Sierra Nevada demonstrated that fire

patterns have been static throughout the

century (McKelvey and Busse 1996,)

although vegetation characteristics have

undoubtedly changed during this period.

These fire patterns were adequately de-

scribed by topography and weather.

Periodic increases in fire activity correlate

with dry conditions (McKelvey and Busse

1996). Similarly, long-term patterns of pre-

settlement fire are consistent (See Generat-

ing Presettlement Fire Patterns,), with

fluctuations largely controlled by weather

(Swetnam 1993).

Exploring fuel limitations

On a smaller scale, the interactions of fire and vegetation could result in a fuels-limited system in

which the probability of a site burning was reduced for some period after a fire occurred. In the Sierra

Figure 6. Simulated fire distribution with contagion
decreasing as a linear function of fire probability. Compare
with McKelvey and Busse (1996; Figure 1).

Figure 7. The relationship between average fire size and
seasonal drought for the Sierra Nevada and years 1933-1989.
See McKelvey and Busse (1996) for an explanation of the
drought index.
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Nevada, McKelvey and Busse found that

reburn patterns for 20th century fires were

largely random. In addition, a re-analysis

of Swetnam’s (1992) fire data for several

giant sequoia groves showed a random

pattern in these groves, although the

groves had very short fire return periods

(5-10 years) and often burned every year.

(See Generating Presettlement Fire

Patterns). Based on these data, and

particularly for the Sierra Nevada, it is

sufficient to model random reburns.

Modeling fire size

Reported fire size distributions tend

to be linear in log-log space (Minnich

1983), with many large and few small fires. This pattern is true for fires in the Sierra Nevada in the 20th

century as well (McKelvey and Busse 1996). The runs of fire produced by the conditional probability

model also produce many small and few

large fires. However, the pattern of decline

is exponential rather than a power function

if C is constant. This is because the conta-

gion rules modify the “runs” structure

inherent to random data. If we make the

simple assumption that contagion declines

where general fire risk is low, then the

conditional probability model produces fire

distribution patterns which are straight in

log-log space (Figure 6) with the slope of

the line being determined by C.

Model flexibility-weather related
effects

Application of these statistical models

to past and future fire scenarios presents several potential problems. Many center on the lack of flexibil-

ity—the models mimic historical patterns rather than account for differences due to changes in manage-

ment policy. It is true that some management approaches that would be difficult to model statistically (fuel

Figure 8. The relationship between median fire size and seasonal
drought for the Sierra Nevada and years 1933-1989. See
McKelvey and Busse (1996) for an explanation of the drought
index.

Figure 9. The relationship between maximum annual fire size
and seasonal drought for the Sierra Nevada and years 1933-
1989. See McKelvey and Busse (1996) for an explanation of the
drought index.
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breaks, for instance). However, fire pat-

terns have been stable over the last 85

years (McKelvey and Busse 1996). The

vegetation in the Sierra also has changed in

that interval far more than we might

envision being associated with a shift in

vegetation-management policies.

In fact, many temporal shifts can be

modeled rather simply using these meth-

ods. As an example, we might ask what the

change in fire patterns might be if the

climate turned drier. For evidence, we can

look at the statistical relationships between

fire and drought in the Sierra Nevada from

1933-1989. Total acreage was positively correlated with hot, dry years (McKelvey and Busse 1996). Closer

examination, showed that hot dry years were not strongly associated with fire size, whether we look at

average (Figure 7) or median fire size (Figure 8), or largest annual fire (Figure 9). The primary reason that

more acres burn in hot dry years is that there are more fires (Figure 10). Based on these data, it is reason-

able to model changes in weather as an overall either increase or decrease (dry or wet) in fire occurrence at

all elevations. There is, however, little

evidence to support a change in fire size,

which in this modeling context is controlled

by C.

Application of SFS to an actual
landscape

As a trial application, we utilized a

portion of the fire probability map developed

to describe fire occurrence patterns the 20th

century Sierra Nevada (See McKelvey and

Busse 1996, Plate 3) (Figure 11). Figure 12

shows an example of an 85-year run on this

landscape using SFS with moderate conta-

gion. To determine the effects of varying

contagion on simulated fire occurrence

patterns, we simulated 10,000-year runs with

moderate contagion (as in Figure 12) and

Figure 10. The relationship between number of fires and
seasonal drought for the Sierra Nevada and years 1933-1989.
See McKelvey and Busse (1996) for an explanation of the
drought index.

Figure 11. Background fire probability for an area in the southern
Sierra Nevada and for fires in the 20th century (See McKelvey
and Busse 1996; Plate 3).
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very high contagion (See Figure 3). Figures

13 and 14 portray the results of these simula-

tions. With moderate contagion, the simulated

fire frequencies are very close to the back-

ground probability map (Figure 11). For high

contagion fires, the adjacency effects cause

the fire to carry into higher elevation zones,

and to shrink away from the map edges (map

edges have fire probabilities of 0.0).

Discussion

We believe that our fire modeling

approach has many desirable features. Since

we developed the conceptual framework for

this type of modeling in 1994, we have

demonstrated its application as a methodol-

ogy and its use at the landscape level. In

addition, we have developed a working

prototype model, and have created two

potential risk maps for the Sierra Nevada, one

representing 20th century fire (McKelvey and

Busse 1996) and one representing

presettlement fires (Generating Presettlement

Fire Patterns).

The model is still in need of significant

improvements prior to application in a

management context. First, the rules for

contagion should be formally two-dimen-

sional, rather than using a space-filling

implementation of one-dimensional conta-

gion. This will allow C to be directly linked to

two-dimensional shapes. Second, we need to

build an iterative process to control the effects

of contagion on simulated fire distribution so

that the simulated patterns better match the

background probabilities. Lastly, we need to

Figure 12. Simulation of an 85-year fire pattern on the
landscape shown in Figure 11. Colors represent the number of
times an area reburned.

Figure 13.  Emergent fire patterns based on a 10,000-year
simulation with moderate contagion (See Figure 12), and using
the landscape shown in Figure 11. Colors represent the number
of times a site reburned.
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determine rules controlling fire effects in

those areas that burn.

These current limitations, in contrast to

the many weaknesses associated with expan-

sions of Rothermel’s (1972) models, are much

easier to address. The first two are relatively

simple internal modeling issues. The third can

be most easily solved by relating specific fire

weather to fire size using fire record data.

There is work currently in progress by Larry

Bradshaw (Larry Bradshaw, USFS Fire

Laboratory, Missoula Montana, pers. comm.)

to utilize the Forest Service fire record data

held in Kansas City to develop these relation-

ships.
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